A POINT DISTAL TRANSFORMATION OF THE TORUS

BY M. REES

ABSTRACT

A point-distal non-distal homeomorphism of the torus is constructed. By a similar construction, a point-distal homeomorphism of the n + 1-dimensional torus can be constructed, with any two compact subsets of \mathbf{R}^n among its fibres over some factor.

Let $K = \mathbb{R}/\mathbb{Z}$ denote the circle, and K^2 the torus. The basic proposition is the following:

PROPOSITION. Let T be a minimal almost periodic homeomorphism of K^2 of the form:

$$T(x, y) = (x + \alpha, y + \beta).$$

Let $(x_0, y_0) \in K^2$. Then there exists a homeomorphism $S: K^2 \to K^2$ such that $(K^2, T) <_{\Phi}(K^2, S)$, where Φ is of the form $\Phi(x, y) = (x, \varphi(x, y))$ and $\Phi^{-1}(x, y)$ is singleton except when $(x, y) = T^n(x_0, y_0)$ for some n, in which case $\Phi^{-1}(x, y)$ is an interval in $\{x\} \times K$. Thus S is a minimal point-distal (non-distal) homeomorphism.

The purpose of this construction is to provide a non-pathological example of a point-distal non-distal minimal homeomorphism. Up to now examples have tended to be constructed on zero-dimensional spaces [1].

Various generalizations will be stated at the end of the paper. As a corollary, it can be shown that any two compact subsets of \mathbb{R}^n can occur among the fibres of a minimal transformation group with phase space K^{n+1} over some factor (see 4.3). This answers a question raised by Furstenburg in private correspondence.

I should like to thank my supervisor, W. Parry, for his help with the preparation of this paper.

Received March 4, 1978

1. Reduction of proof of the proposition.

1.1. First we need some notation. Let $z_0 = (x_0, y_0) \in K^2$, and $T: K^2 \to K^2$ be fixed from now on, where:

$$T(x, y) = (x + \alpha, y + \beta).$$

Let $X = (K \setminus \bigcup_{i=-\infty}^{\infty} \{x_0 + i\alpha\}) \times K$. For $n \ge 0$, let $z_{2n} = (x_{2n}, y_{2n}) = T^n(x_0, y_0)$ and

$$z_{2n+1} = (x_{2n+1}, y_{2n+1}) = T^{-n-1}(x_0, y_0).$$

Let $\sigma, \tau: \mathbb{N} \to \mathbb{N}$ be bijective maps such that $Tz_n = z_{\sigma(n)}$ and $T^{-1}z_n = z_{\tau(n)}$. So $\sigma \circ \tau = \tau \circ \sigma = \text{identity on } \mathbb{N}$. Then $0 < |\sigma(n) - n| \le 2$ and $0 < |\tau(n) - n| \le 2$ for all n.

For $x, y \in K$, if $x = \mathbf{Z} + x_1$, $y = \mathbf{Z} + y_1$ $(x_1, y_1 \in \mathbf{R})$, then let $|x - y| = \inf_{n \in \mathbf{Z}} |x_1 - y_1 + p|$.

If
$$x = (x_1 \cdots x_r) \in K'$$
, $y = (y_1 \cdots y_r) \in K'$, let $|x - y| = \text{Max}_{1 \le i \le r} |x_i - y_i|$.

If Y is any topological space and $f, g: Y \rightarrow K'$, then let

$$||f-g||_{\infty} = \sup_{y \in Y} |f(y)-g(y)|.$$

For $A \subseteq K'$, let $|A| = \sup\{|a-b|: a, b \in A\}$.

- 1.2. First Reduction. To prove the proposition, it will suffice to construct $\Phi: K^2 \to K^2$ satisfying (i)–(iii) below:
 - (i) Φ is a continuous onto map of the form $\Phi(x, y) = (x, \varphi(x, y))$.
 - (ii) $\Phi^{-1}(z)$ is singleton for $z \neq z_n$ $(n \ge 0)$ and $\Phi^{-1}(z_n)$ is an interval in $\{x_n\} \times K$.
- (If Φ satisfies (i) and (ii) then the dense subset $X \subseteq K^2$ of 1.1 is Φ and T-invariant, and Φ maps X one-to-one onto itself.)
- (iii) The maps $\Phi^{-1} \circ T \circ \Phi$, $\Phi^{-1} \circ T^{-1} \circ \Phi$: $X \to X$ are uniformly continuous. For if (i), (ii) and (iii) are satisfied, let S be the unique extension of $\Phi^{-1} \circ T \circ \Phi$ to K^2 .
- 1.3. Second Reduction. To prove the proposition, it will suffice to construct a sequence $\{A_n\}_{n\geq 0}$ of closed subsets of K^2 , and a sequence $\{\Lambda_n\}_{n\geq 0}$ of continuous functions from K^2 to K^2 such that:
- (i) A_n is of the form $\{(\mathbf{Z} + x, \mathbf{Z} + y) : x \in [a_n, b_n], y \in [c_n, d_n]\}$, where $z_n = (\mathbf{Z} + (a_n + b_n)/2, \mathbf{Z} + (c_n + d_n)/2)$, so that z_n is the centre of A_n .
- (ii) $\Lambda_n = \text{identity on } K^2 \setminus A_n$; $\Lambda_n(A_n) = A_n$; Λ_n is continuous and of the form $\Lambda_n(x, y) = (x, \lambda_n(x, y))$; $\Lambda_n^{-1}(x, y)$ is singleton except if $(x, y) = z_n$, and:

$$\Lambda_n^{-1}(z_n) = \{x_n\} \times \{\mathbf{Z} + y : y \in [(3c_n + d_n)/4, (c_n + 3d_n)/4]\}.$$

- (iii) $\Lambda_{\sigma(n)}^{-1} \circ T \circ \Lambda_n$ and $\Lambda_{\tau(n)}^{-1} \circ T^{-1} \circ \Lambda_n$ are uniformly continuous on $K^2 \setminus \{z_n\}$.
- (iv) $|A_n| < (\frac{1}{2}) \operatorname{Max} \{|x_m x_p| : m \neq p, m, p \leq n + 5\}$. (So Λ_n and Λ_m will commute for $|m n| \leq 5$.)
 - (v) $|A_n| < 1/2^n$.
- (vi) There exists a sequence $\{a_n\}_{n=1}^{\infty}$ of integers ≥ 2 with $\prod_{n=1}^{\infty} (1 (1/a_n)) > 0$, and if $x, y \in K^2$ with |x y| < 1/n, then for m > n,

$$|\Phi_m(x) - \Phi_m(y)| \ge \prod_{r=n+1}^m (1 - (1/a_r)) |\Phi_n(x) - \Phi_n(y)|$$

where $\Phi_n: K^2 \to K^2$ is $\Lambda_n \circ \Lambda_{n-1} \circ \cdots \circ \Lambda_0$.

(vii) Let
$$\Phi_{\sigma,n} = \Lambda_{\sigma(n)} \circ \cdots \circ \Lambda_{\sigma(0)}, \ \Phi_{\tau,n} = \Lambda_{\tau(n)} \circ \cdots \circ \Lambda_{\tau(0)}.$$

Let $\Gamma_n, \Delta_n : X \to X$ be defined by $\Gamma_n = \Phi_{\sigma,n}^{-1} \circ T \circ \Phi_n$, $\Delta_n = \Phi_{\tau,n}^{-1} \circ T^{-1} \circ \Phi_n$. Then each Γ_n, Δ_n is uniformly continuous on X, and $\{\Gamma_n\}$, $\{\Delta_n\}$ are uniformly Cauchy on X.

PROOF. $\|\Phi_{n+1} - \Phi_n\|_{\infty} = \|\Lambda_{n+1}\text{-identity}\|_{\infty} < 1/2^{n+1}$ by (v). So Φ_n converges uniformly to Φ , say.

(iv) and (v) imply that the sequences $\{\Phi_{\sigma,n}\}$ and $\{\Phi_{\tau,n}\}$ also converge uniformly to Φ .

If the sequences Γ_n and Δ_n converge uniformly on X to Γ and Δ respectively (see (vii)), then (vii) implies that Γ and Δ are uniformly continuous on X, and it is easily seen that $\Phi \circ \Gamma = T \circ \Phi$, $\Phi \circ \Delta = T^{-1} \circ \Phi$ on X. Hence the second reduction implies the first reduction provided we can prove the following lemma:

1.4. LEMMA. 1.3 implies (ii) of 1.2.

PROOF. Suppose $\Phi(x) = \Phi(y)$, some $x \neq y$. $|x - y| \ge 1/n$, say. Then

$$0 = |\Phi(x) - \Phi(y)| = \lim_{m \to \infty} |\Phi_m(x) - \Phi_m(y)| \ge \left\{ \prod_{r=n+1}^{\infty} (1 - (1/a_r)) \right\} |\Phi_n(x) - \Phi_n(y)|$$

by (vi) of 1.3.

So
$$\Phi_n(x) = \Phi_n(y) = z_i$$
, some $i \le n$, by (ii), (iv) of 1.3.

So
$$\Phi(x) = \Phi(y) = z_i$$
 by (iv) of 1.3.

1.5. Clearly a sequence $\{\varepsilon_n^1\}_{n=0}^{\infty}$ of positive reals can be chosen such that if $|A_n| < \varepsilon_n^1$ then (i), (iv), (v) of 1.3 are satisfied. In section 2 we shall show how to construct $\{\Lambda_n\}_{n=0}^{\infty}$, given $\{A_n\}_{n=0}^{\infty}$, such that (ii) and (iii) are satisfied. In section 3 we shall show that by choosing $|A_n|$ sufficiently small, (vi) and (vii) will be satisfied. Hence the proof of the proposition will be completed.

2. Construction of the Λ_n

2.1. We shall define a function $A \mapsto \Lambda_A$ from the set of closed "squares" in K^2 to $C(K^2, K^2)$, the set of continuous functions from K^2 to K^2 such that, if $\{A_n\}$ is a sequence of squares with z_n the centre of A_n , we shall define $\Lambda_n = \Lambda_{A_n}$, and then (ii) and (iii) of 1.3 will be satisfied.

We shall ensure that Λ_A has the following properties:

Let $A = \{(\mathbf{Z} + x, \mathbf{Z} + y) : (x, y) \in [a, b] \times [c, d]\}$ be denoted by $[a, b] \times [c, d]$ by abuse of notation:

- (i) $\Lambda_A: K^2 \to K^2$ is continuous onto.
- (ii) $\Lambda_A = \text{identity outside } A, \Lambda_A(A) = A.$
- (iii) Λ_A is of the form $\Lambda_A(x, y) = (x, \lambda_A(x, y))$.
- (iv) $\Lambda_A^{-1}(x, y)$ is singleton except for $(x, y) = (\mathbf{Z} + (a + b)/2, \mathbf{Z} + (c + d)/2) = z_A$, in which case $\Lambda_A^{-1}(x, y) = \{\mathbf{Z} + (a + b)/2\} \times [(3c + d)/4, (c + 3d)/4] = I_A$.
 - (v) If $R: K^2 \rightarrow K^2$ is defined by:

$$R(z_A + x) = z_B + x \ (x \in K^2),$$

then $\Lambda_B^{-1} \circ R \circ \Lambda_A$ is uniformly continuous on its domain of definition $K^2 \setminus \{z_A\}$.

- 2.2. DEFINITION. If [-1,1] denotes the closed interval of **R**, choose a continuous function $h: [-1,1]^2 \rightarrow [-1,1]$ with the following properties, where $h_t(s) = h(t,s)$ (by definition):
 - (i) h_t is a homeomorphism for $t \neq 0$.
 - (ii) $h_1 = h_{-1} = \text{identity on } [-1, 1]$. $h_t(1) = 1$, $h_t(-1) = -1$ for all t.
 - (iii) $h_t([-\frac{1}{2},\frac{1}{2}]) = [-|t|/2, |t|/2]$ for all $t \neq 0$.

$$[-\frac{1}{2},\frac{1}{2}]=h_0^{-1}(\{0\}).$$

- (iv) h_0 is onto, and $h_0^{-1}(t)$ is singleton for $t \neq 0$.
- (v) $h_t = h_0$ on $h_0^{-1}([-1, -t] \cup [t, 1])$.
- 2.3. Definition of Λ_A . Suppose $|A| = 2\delta$. Define $\Lambda_A =$ identity outside A, and:

$$\Lambda_A(z_A+(t,s))=z_A+(t,h_t\circ h_\delta^{-1}(s)) \quad \text{for all } (t,s)\in [-\delta,\delta]^2.$$

It is easily checked that Λ_A is the identity on the boundary of A, hence continuous, and that (i)-(v) of 2.2 are satisfied.

For example, to show (v) is satisfied, it suffices to show that $\Lambda_B^{-1} \circ R \circ \Lambda_A$ is uniformly continuous on $(A \cap R^{-1}(B)) \setminus \{z_A\}$. But if $z_A + x$ is in this set, with $x = (x_1, x_2)$,

$$\Lambda_B^{-1} \circ R \circ \Lambda_A (z_A + \mathbf{x}) = \Lambda_B^{-1} (z_B + (x_1, h_{x_1} \circ h_{\delta}^{-1}(x_2))$$

$$= z_B + (x_1, h_{\eta} \circ h_{x_1}^{-1} \circ h_{x_1} \circ h_{\delta}^{-1}(x_2)) = z_B + (x_1, h_{\eta} \circ h_{\delta}^{-1}(x_2))$$

where $2\eta = |B|$ and $2\delta = |A|$.

(v) follows since the function $h_n \circ h_{\delta}^{-1}$ is uniformly continuous.

3. Completion of proof of the proposition

- 3.1. The $\{A_n\}$ and $\{\Lambda_n\} = \{\Lambda_{A_n}\}$ (see section 2) are defined inductively. Suppose $|A_r| < \text{Min}(\varepsilon_r^1, \varepsilon_r^2, \varepsilon_r^3)$ for $r \ge 0$, where the ε_r^2 and ε_r^3 are defined below. It will be shown that the $\{A_n\}$ and $\{\Lambda_n\}$ satisfy (vi) and (vii) of 1.3, which will complete the proof of the proposition.
- (i) $\varepsilon_0^2 = \varepsilon_0^1$, and for $r \ge 0$, ε_r^2 is chosen so that if $|A_r| < \varepsilon_r^2$, then: $|\Phi_{r-1}^{-1}((a_r+1)A_r)| < 1/r$, where $\{a_r\}$ is a fixed sequence of integers with $a_r \ge 2$ and $\prod_{r=1}^{\infty} (1-(1/a_r)) > 0$, and $(a_r+1)A_r$ denotes the square with the same centre as, and sides (a_r+1) -times as long as, A_r .
 - (ii) $\varepsilon_0^3 = \varepsilon_0^1$.

For $s \ge 0$, a closed subset N_s of K^2 is chosen so that $z_i \not\in N_s$ for $i \le s$ and $A_i \subseteq N_s$ $(s+1 \le i \le s+5)$ and $T(A_{s+3}) \subseteq N_s$, $T^{-1}(A_{s+3}) \subseteq N_s$ (this is possible by 1.3 (iv)).

Then Φ_s^{-1} is defined on N_s . So η_s is chosen so that:

if
$$x, y \in N_s$$
 and $|x - y| \le \eta_s$, then $|\Phi_s^{-1}(x) - \Phi_s^{-1}(y)| < 1/2^s$.

Then $\varepsilon_{r}^{3} = \text{Min}(\eta_{r-i}: 1 \le i \le 5)$.

3.2. Lemma If $|A_n| < \varepsilon_n^2$ for all n, then (vi) of 1.3 will be satisfied.

PROOF Let $|x-y| \ge 1/n$. Then for $m \ge n$, $\Phi_m(x)$ and $\Phi_m(y)$ are not both in $(a_{m+1}+1)A_{m+1}$.

Case 1. If $\Phi_m(x)$ and $\Phi_m(y)$ are both not in A_{m+1} then

$$|\Phi_{m+1}(x) - \Phi_{m+1}(y)| = |\Phi_m(x) - \Phi_m(y)|.$$

Case 2. If $\Phi_m(x) \in A_{m+1}$ and $\Phi_m(y) \not\in (a_{m+1}+1)A_{m+1}$, then

$$|\Phi_{m+1}(x) - \Phi_m(x)| < |A_{m+1}|, \text{ so } |\Phi_m(x) - \Phi_m(y)| \ge a_{m+1}|A_{m+1}|.$$

So

$$|\Phi_{m+1}(x) - \Phi_{m+1}(y)| \ge |\Phi_m(x) - \Phi_m(y)| - |\Phi_{m+1}(x) - \Phi_m(x)|$$

$$> |\Phi_m(x) - \Phi_m(y)| - |A_{m+1}| \ge |\Phi_m(x) - \Phi_m(y)| (1 - (1/a_{m+1})).$$

So by induction, (vi) of 1.3 is satisfied.

So now we only need to show (vii) of 1.3 can be satisfied. This will be shown in 3.3-3.5.

In 3.3, 3.4, $\| \cdot \|_{\infty}$ denotes the sup norm on functions defined on X.

3.3. LEMMA. If $|A_n| < \varepsilon_n^1$, then:

$$\begin{split} \| \Gamma_{n} - \Gamma_{n+1} \|_{\infty} & \leq \max_{n-1 \leq r \leq n+3} \| \Phi_{n-2}^{-1} \circ \Lambda_{r}^{-t} - \Phi_{n-2}^{-1} \|_{\infty} \\ & + \| \Phi_{n-2}^{-1} \circ T \circ \Lambda_{n+1} - \Phi_{n-2}^{-1} \circ T \|_{\infty}, \\ \| \Delta_{n} - \Delta_{n+1} \|_{\infty} & \leq \max_{n-1 \leq r \leq n+3} \| \Phi_{n-2}^{-1} \circ \Lambda_{r}^{-1} - \Phi_{n-2}^{-1} \|_{\infty} \\ & + \| \Phi_{n-2}^{-1} \circ T^{-1} \circ \Lambda_{n+1} - \Phi_{n-2}^{-1} \circ T^{-1} \|_{\infty}. \end{split}$$

PROOF. 1.3(iv) shows that on the set where Γ_n and Γ_{n+1} differ,

$$\Gamma_n = \Phi_{n-2}^{-1} \circ T \circ \Phi_{n-2}, \qquad \Gamma_{n+1} = \Phi_{n-2}^{-1} \circ \Lambda_{\sigma(n+1)}^{-1} \circ T \circ \Lambda_{n+1} \circ \Phi_{n-2}.$$

So

$$\begin{split} \| \, \Gamma_n - \Gamma_{n+1} \, \|_\infty & \leq \| \, \Phi_{n-2}^{-1} \circ \Lambda_{\sigma(n+1)}^{-1} \circ T - \Phi_{n-2}^{-1} \circ T \, \|_\infty + \| \, \Phi_{n-2}^{-1} \circ T - \Phi_{n-2}^{-1} \circ T \circ \Lambda_{n+1} \, \|_\infty \\ & = \| \, \Phi_{n-2}^{-1} \circ \Lambda_{\sigma(n+1)}^{-1} - \Phi_{n-2}^{-1} \, \|_\infty + \| \, \Phi_{n-2}^{-1} \circ T \circ \Lambda_{n+1} - \Phi_{n-2}^{-1} \circ T \, \|_\infty. \end{split}$$

The result for $\|\Gamma_n - \Gamma_{n+1}\|_{\infty}$ follows since $\|\sigma(n) - n\| \le 2$ for all n, and the result for $\|\Delta_n - \Delta_{n+1}\|_{\infty}$ is similar.

3.4. LEMMA. If $|A_n| < \text{Min}(\varepsilon_n^3, \varepsilon_n^1)$ for all n, then:

$$\|\Gamma_n - \Gamma_{n+1}\|_{\infty} < 1/2^{n-3}$$
 and $\|\Delta_n - \Delta_{n+1}\|_{\infty} < 1/2^{n-3}$.

PROOF. Let N_s , η_s be as in 3.1 (i) $(s \ge 0)$.

Using 1.3 (iv), if $n-1 \le r \le n+3$, $x \in X$ and $\Lambda_r^{-1}(x) \ne x$, then $x, \Lambda_r^{-1}(x) \in N_{n-2} \cap A_r$ and $|x-\Lambda_r^{-1}(x)| < \eta_{n-2}$.

If $T \circ \Lambda_{n+1}(x) \neq T(x)$ then $T \circ \Lambda_{n+1}(x)$, $T(x) \in N_{n-2}$ and

$$|T \circ \Lambda_{n+1}(x) - T(x)| = |\Lambda_{n+1}(x) - x| < \eta_{n-2}.$$

So $\max_{n-1 \le r \le n+3} \|\Phi_{n-2}^{-1} \circ \Lambda_r^{-1} - \Phi_{n-2}\|_{\infty} < \frac{1}{2}^{n-2}$, and $\|\Phi_{n-2}^{-1} \circ T \circ \Lambda_{n+1} - \Phi_{n-2}^{-1} \circ T\|_{\infty} < 1/2^{n-2}$. So by 3.3 $\|\Gamma_n - \Gamma_{n+1}\|_{\infty} < 1/2^{n-3}$. Similarly $\|\Delta_n - \Delta_{n+1}\|_{\infty} < 1/2^{n-3}$.

3.5. Lemma. Γ_n and Δ_n are uniformly continuous on X.

PROOF. Γ_0 and Δ_0 are uniformly continuous on X by the definition of Λ_n in

section 2 (see in particular 2.1 (v)) and similarly $\Lambda_{\sigma(n)}^{-1} \circ T \circ \Lambda_n$ and $\Lambda_{\tau(n)}^{-1} \circ T^{-1} \circ \Lambda_n$ are uniformly continuous on X for all $n \ge 0$.

Assume inductively that Γ_n is uniformly continuous. $\Gamma_n = \Gamma_{n+1}$ except on $[x_{n+1} - \varepsilon_{n+1}^1, x_{n+1} + \varepsilon_{n+1}^1] \times K = A$. To show Γ_{n+1} is uniformly continuous, it suffices to show uniform continuity on A. A is invariant under all the Λ_m and is mapped to

$$\left[x_{\sigma(n+1)}-\varepsilon_{n+1}^{1},\ x_{\sigma(n+1)}+\varepsilon_{n+1}^{1}\right]\times K=B$$

by $\Lambda_{\sigma(n+1)}^{-1} \circ T \circ \Lambda_{n+1}$, and B is invariant under all Λ_m .

 Φ_n is uniformly continuous on A and $\Phi_{\sigma,n}^{-1}$ is uniformly continuous on B. $\Lambda_{\sigma(n+1)}^{-1} \circ T \circ \Lambda_{n+1}$ is uniformly continuous on A.

Since $\Gamma_{n+1} = \Phi_{\sigma,n}^{-1} \circ \Lambda_{\sigma(n+1)}^{-1} \circ T \circ \Lambda_{n+1} \circ \Phi_n$, Γ_{n+1} is uniformly continuous on A, as required.

4. Generalizations of the proposition and a corollary

4.1. (First generalization) In the proposition, the construction can be carried out with T any minimal distal homeomorphism of the form:

$$T(x, y) = (x + \alpha, y + g(x)).$$

4.2. (Second generalization — to n dimensions) Let $T: K^n \to K^n$ ($n \ge 2$) be an arbitrary minimal almost periodic homeomorphism with $T(x_1 \cdots x_n) = (x_1 + \alpha_1 \cdots x_n + \alpha_n)$. Let $z_1 \cdots z_m \in K^n$ be such that $T'(z_i) \ne z_j$ for any r, if $i \ne j$. Then there exists a homeomorphism $S: K^n \to K^n$ such that:

$$(K^n, T) \leq_{\Phi} (K^n, S),$$

where $\Phi(\mathbf{x}) = \Phi(x_1 \cdots x_n) = (x_1, \varphi_2(\mathbf{x}) \cdots \varphi_n(\mathbf{x}))$, and $\Phi^{-1}(z)$ is singleton except for $z = T^n(z_i)$, in which case $\Phi^{-1}(z)$ is homeomorphic to an (n-1)-cube.

Moreover, for each i:

$$|\Phi^{-1}(T^n(z_i))| \to 0$$
 as $|n| \to \infty$.

4.3. COROLLARY. If T, S, Φ, K^n are as in 4.2, and $B_1, \dots B_m$ are any compact subsets of \mathbb{R}^{n-1} , then there exists (X, T_1) with $(K^n, T) <_{\Phi_1}(X, T_1) <_{\Phi_2}(K^n, S)$ with $\Phi_1 \circ \Phi_2 = \Phi$ and with $x_i \in \Phi_1^{-1}(z_i)$ $(i = 1 \cdots m)$ such that $\Phi_2^{-1}(T_1^n(x_i))$ is homeomorphic to B_i $(n \in \mathbb{Z})$ and $\Phi_2^{-1}(x)$ is singleton if $x \neq T^n(x_i)$ for any n, i.

PROOF. Regard B_i as a subset of $\Phi^{-1}(z_i)$. For $z, w \in K^n$, define $z \sim w$ if and only if either z = w or both $z, w \in T^n(B_i)$, for some $n \in \mathbb{Z}$, $i = 1 \cdots m$.

Then $z \sim w$ implies $\Phi(z) = \Phi(w)$ and \sim is a closed T-invariant equivalence relation (closure follows from the fact that $|\Phi^{-1}(T^n(z_i))| \to 0$ as $|n| \to \infty$).

Now put $X = K^n/\sim$ and let T_1 be the homeomorphism of X induced by T.

Note. X is n-dimensional (proof omitted) but not, in general, a manifold.

4.4. (Third generalization) In 4.2, $\Phi^{-1}(T^n(z_i))$ can be taken to be homeomorphic to any compact subset B_i of \mathbb{R}^{n-1} with the following properties:

Regarding B_i as a subset of $(-1,1)^{n-1}$, there exists a continuous function $h: [-1,1]^n \to [-1,1]^{n-1}$, such that if $h_t(x) = h(t,x)$ $(t \in [-1,1], x \in [-1,1]^{n-1})$, then:

- (i) h_t is a homeomorphism for all t.
- (ii) $h_1 = h_{-1} = identity$, $h_t = identity$ on the boundary of $[-1, 1]^{n-1}$ for all t.
- (iii) $h_t(B_t) \subseteq (-t, t)^{n-1}$ for all $t \neq 0$.
- (iv) h_0 is onto with $h_0^{-1}(0) = B_i$. $h_0^{-1}(x)$ is singleton if $x \neq 0$.
- (v) $h_t = h_0$ on $h_0^{-1}([-1,1]^{n-1}\setminus(-t,t)^{n-1})$.

REFERENCE

1. W. Veech, Point distal flows, Amer. J. Math. 92 (1970), 205-242.

MATHEMATICS INSTITUTE
UNIVERSITY OF WARWICK
COVENTRY, ENGLAND